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Abstract. The second-order field equations in the 't Hooft-Polyakov monopole theory in 
the Prasad-Sommerfield limit are solved by Hirota's method. All the known point and 
regular solutions are rederived in a systematic way. 

1. Introduction 

In recent times there has been considerable progress in our understanding of non-linear 
phenomena. In spite of this there exist relatively few systematic methods for obtaining 
solutions to non-linear differential equations. One such method, developed in the last 
decade, is the bilinear operator method of Hirota (1976, 1980). This method, capable 
of generating particular solutions, has been successfully applied to a number of time 
evolution equations of mathematical physics, especially those admitting soliton solu- 
tions. The method has also been used in the case of coupled non-linear equations 
(Hirota and Satsuma 1981). In this paper we apply Hirota's method to the coupled 
second-order field equations of the 't Hooft-Polyakov monopole theory ('t Hooft 1974, 
Polyakov 1974). 

In 1974 't Hooft (1974) and Polyakov (1974) showed that magnetic monopoles can 
exist as finite-energy solutions of the field equations of non-Abelian gauge theories. 
Since the field equations are highly non-linear it has not been possible so far to obtain 
the solution in a closed form. However, in the limit of vanishing Higgs self-interaction, 
Prasad and Sommerfield (1975, hereafter referred to as PS) obtained an exact solution 
by guesswork. Later it was realised that this solution satisfies the lower bound of 
energy, called the Bogomolny bound (Bogomolny 1976), and hence could be obtained 
by solving first-order equations instead of second-order field equations. Several point 
monopole solutions were also obtained (Protogenov 1977, Ju 1978) by solving the 
first-order Bogomolny equations. I t  may be noted that even though all the solutions 
of the Bogomolny equations are solutions of the field equations the converse is not true. 

Here we solve the second-order field equations of the 't Hooft-Polyakov monopole 
theory in the PS limit by applying Hirota's method. The solutions are obtained in the 
form of a power series involving a large number of arbitrary constants. Only for 
specific choices of these constants are we able to sum these series and obtain the 
solutions in terms of elementary functions. I t  happens, however, that where we have 
been able to put the solutions into closed form they satisfy the first-order Bogomolny 
equations and coincide with solutions already reported in the literature. Still it is 
interesting that all these monopole solutions could be obtained from the second-order 
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field equations in a single framework and in a systematic way. Moreover, our work 
suggests the possible existence of additional monopole solutions, the demonstration 
of which is not complete at the moment because of the difficulty of summing certain 
series expansions. 

In § 2 we apply Hirota’s method to the field equations and obtain a general solution 
in terms of infinite series which depend on a number of parameters. By adjusting the 
parameters, the series are summed and different monopole solutions obtained. This 
is discussed in 0 3. Some of the details of the calculations are relegated to an appendix. 

2. Hirota’s method for the ’t Hooft-Polyakov equations 

In the PS limit the equations of motion of the SU(2) gauge theory become (Prasad and 
Sommerfield 1975) 

d2 K 
dr 
d2 H 
dr 

r 2 T  = K ( K’ - 1 + H ’ )  

r 2 T = 2 H K 2  

where r is the radial variable and K and H are functions of r only. The gauge and 
Higgs fields are non-singular at the origin only if 

K + 1  H+O as r + O .  ( 2 )  
Boundary condition (2)  is also necessary for finite energy of the solution. 

Following Hirota we make a dependent variable transformation 

in terms of which ( 1 )  can be rewritten as 
r2( BD’AB - AD2BB) = A(A2  - B 2  + C’)  
r2( BD’CB - CD’BB) = 2CA2 

where the bilinear operator D” is defined by 

D“AB = --- A(r)B(r’ ) l r= ,  ( d 4  i)“ ( 5 )  

We split (4b)  using an arbitrary function f ( r )  to get 

r2D’BB +JB2  = -2A2 (6a )  
r’D’CB +fCB = 0. (66)  

One readily verifies that solutions of ( 6 )  above are solutions of (46) .  Equation (4a )  
now becomes 

r2BD2AB = A[  C’- (f+ 1 ) B 2  - A 2 ] .  ( 6 ~ )  
In Hirota’s method the dependent variables A, B and C are expanded in a perturbation 
series. A consistent expansion is 

A ( r ) = E A , ( r ) + C 2 A 2 ( r ) + . .  . (7a )  
B ( r )  = 1 + e B , ( r )  + & ’ B 2 ( r ) + .  . . 
C ( r ) = l + & C , ( r ) + ~ ~ ~ ~ ( r ) +  . . .  ( 7 c )  

(7b)  
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where E is a parameter. Substituting ( 7 )  in (6) and comparing the zeroth power of E 

on both sides we see that f( r )  should be equal to zero for consistency. Hence (6) can 
be rewritten as 

r2D2BB = -2A’ ( 8 a )  

D’CB = o (86 )  
r’BD’AB = A( C’ - B’ - A’). (8c)  

The functions ( A , ,  B , ,  C,), ( A 2 ,  B2,  C2) ,  . . . , are obtained by integrating successively 
the linear equations which follow by substituting ( 7 )  in (8) and comparing coefficients 
of E ,  E ’ ,  . . . , respectively. For example, the first two sets of equations are 

d2A, -- d’C, -- d2 B, 
dr’ - O  dr’ - O  dr’ - O  
-- 

r’(2D’B’l + D 2 B I B , )  = -2A: 

D’C21 + D’CIBl + D21 B2 = 0 ( 9 b )  
r’( D2A21 + D’A,B, + B, D 2 A l l )  = 2AI( C, - B,) .  

The general solutions of ( 9 a )  are 

B 1 =  b,r+d,  C ,  = c , r  + e,  A ,  = a , r + f ,  ( l o a )  
where a,, . . . ,f, are arbitrary constants. Substituting ( loa)  we integrate (96 )  to obtain 

B2 = (b ; -  a : ) ( r 2 / 2 ! )  -2a,  f , ( r  In r -  r ) +  f: In r +  b2r+ d ,  

C2 = (a ; -  b:+2b,c,)(r2/2!) +2a,  f , ( r  In r - r )  -f: In r +  c 2 r +  e2 ( l o b )  
A’ = a,  c, r’ + 2 [ f ,  ( c ,  - b, ) + a , ( e, - d ,  )]( r In r - r )  - 2 f, ( e ,  - d , )  In r + a2 r +f2. 

Successive terms are evaluated using the remaining equations to obtain A, B and C 
in the form of infinite series. These series may be summed by choosing the constants 
of integration suitably and the cases where this can be done to yield the solutions in 
terms of elementary functions are described in the next section. 

3. Solutions 

Choosing all integration constants to be zero we have 

for n = 1 , 2 , 3 , .  . . A,, = B, = C, = O  

so that 

K = O  H = l .  

The choice a, = b , ,  d ,  = e, with all other constants zero yields 

B =  l + E ( b l r + d l )  c = 1 + E d ,  A = Ea,r 

and 

where q = a , & / (  1 + d , ~ )  is an arbitrary constant. 
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For a ,  # 61, d ,  = e ,  being the only non-zero constants, we find 

A ( r )  = a,r  
E 2 r Z  

B = 1 + d ,  + b,r+ E’( 1 - dlE + d:E’ -. . .)T 
.s3r3 + 6 , E 2 ( 1  - 2 d , ~  + 3 d ; ~ ’ + .  . .)-+ E 4 ( l  - 3 d , ~  + 6 d : ~ ‘  
3 !  

Assuming Id, E I < 1 ,  by binomial theorem, we have 

E (Er)’ bE’ ( ~ r ) ~ + .  . 
B=l+Edl+Eblr+--  +-- 

l + d l  2! ( 1 + d 1 ) 2  3 !  

= ( E /  7)( b ,  sinh r]r + E cosh 7 r )  

where 

. .  - 

Due to the arbitrariness of d and E we can take 7 as an arbitrary constant independent 
of a ,  and b,. After a straightforward similar calculation the series for C ( r )  becomes 

C ( r ) = ( . s / 7 ) { ( E - b 7 r ) c o s h  T r + ( b - E v r ) s i n h  q r } .  ( 16 )  
Transforming back to the original dependent variables we find 

where p = a / [  b - ( b2+ 
point monopole solution obtained by Ju (1978). The regular PS solution 

is an arbitrary constant. This coincides with the general 

H (  r )  = -7r  coth 7 r  + 1 ( 1 8 )  7 r  K ( r ) = -  
sinh 7 r  

can be derived from (17 )  by setting p = 1 .  By putting p = ea we get the solution reported 
by Protogenov (1977): 

7 r  
sinh( 7 r  + a )  

K ( r )  = H ( r )  = -7r  coth(Tr+a)+  1 .  

We were not able to sum B( r )  and C( r )  series for non-zero a , ,  b ,  , c l ,  d ,  = e ,  with 
all other constants set to zero. However, the A(r)  series can be summed in this case 
because it possesses a representative term. The function A( r )  obtained after summation 
can be substituted in ( 8 a )  to obtain an uncoupled non-linear equation in B. This 
equation can be further reduced to the one-dimensional Liouville equation and, from 
the known solutions of it, B ( r )  can be obtained. From the knowledge of A ( r )  and 
B (  r ) ,  K ( r )  can be evaluated. H ( r )  can be constructed by direct substitution of K ( r )  
in ( l a ) .  However, this procedure does not give any new result. Details of these 
calculations are discussed in the appendix. 
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Appendix 

The (n + 1)th term of the A(r)  series is given by 

A=ar(-1)"d" n-1 (-1) k + , ( c r / d ) k + l ( n i l )  
k = O  ( k + l ) !  

where we have relabelled a , ,  c, and d, as a, c and d respectively. From this 
n (cr/d ) k + l  n !  

Anez=ar( - l ) "d"+ '  1 ( - l ) k  
k = O  ( k  + l ) !  k! (n - k ) !  

= ar(--l)n-(Z) d " + I  (-1)' 
f l + l  d k = O  

d"+l cr 
= ur(-l)"- -L!,(cr/d) 

n + l  d 

where L ! , ( x )  is the associated Laguerre polynomial (Gradshteyn and Ryzhik 1965). 
A(r )  now becomes 

A( r )  = sur[ 1 + ( y )  f (- 1)"- (Ed)"+' L!,( y )  ] , 
n = O  n + l  

Using the relation (Whittaker and Watson 1965) 

ant "d f a n d " = j o x e - '  f - dt 
n = O  n = O  n !  

A(r )  can be rewritten as 
iT 

( n + l ) !  

After performing the summation (Gradshteyn and Ryzhik 1965) we get 

which upon integration (Gradshteyn and Ryzhik 1965) yields, for c < 0, 

A( r )  = ear exp - 
(l::&) 

Substituting this in (8a) ,  an uncoupled non-linear equation for B is obtained: 

D'BB = -2(sa)' exp[2ecr/(l+ d s ) ] .  (A81 
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By putting 

E cr 
B(r) = ea exp(--f(r)) 1 + d s  

we get the one-dimensional Liouville equation 
f ”  e’f. 

Three distinct solutions of this equation are (Ju 1978) 

f = - l n ( r + p )  ( A l l a )  

( A l l b )  

( A l l c )  

where a and /3 are arbitrary constants. Using (A7), (A9) and (3), K ( r )  can be calculated 
for each solution ( A l l ) .  In each case H ( r )  can be constructed by direct substitution 
of K ( r )  in ( l a ) .  The results are, for ( A l l a ) ,  

K = r / ( r + P )  H = P / ( P  + r)  (‘412) 

for (30b) 

(A131 
a r  

sin a ( r + p )  
K =  H = - 2 a r c o t [ a ( r + p ) ] + 1  

and for (30c) 

(A14) 
2ar  

sinh[ LY ( r  + P ) ]  K =  H = -a r  co th[a( r+P)]+  1. 

The solutions (A12), (A13) and (A14) are readily identified as solutions (13), (19) and 
(17) respectively with a simple redefinition of parameters. 
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